SOLVING FRACTIONAL NONLINEAR SCHR"{O}DINGER EQUATIONS BY FRACTIONAL COMPLEX TRANSFORM METHOD

نویسندگان

  • A. G. Ghazanfari
  • B. Ghazanfari Lorestan university Iran, Islamic Republic of Assist. Prof. in Appl. Math.Department of Mathematics
چکیده مقاله:

In this paper, we apply fractional complex transform to convert the fractional nonlinear Schr"{o}dinger equations to the nonlinear Schr"{o}dinger equations.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method

In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...

متن کامل

New Integral Transform for Solving Nonlinear Partial Dierential Equations of fractional order

In this work, we have applied Elzaki transform and He's homotopy perturbation method to solvepartial dierential equation (PDEs) with time-fractional derivative. With help He's homotopy per-turbation, we can handle the nonlinear terms. Further, we have applied this suggested He's homotopyperturbation method in order to reformulate initial value problem. Some illustrative examples aregiven in ord...

متن کامل

Solving of the fractional non-linear and linear Schrodinger equations by homotopy perturbation method

In the present paper, The homotopy perturbation method (HPM) is applied to obtain approximate analytical solutions of the fractional non-linear Schrodinger equations. The solutions are obtained in the form of rapidly convergent infinite series with easily computable terms. Finally, we have illustrated the ability of the method for solving fractional non linear equation by some examples.

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

Approximate Series Solution of Nonlinear, Fractional Klein- Gordon Equations Using Fractional Reduced Differential Transform Method

Corresponding Author: Mohammed Al-Smadi Department of Applied Science, Ajloun College, AlBalqa Applied University, Ajloun 26816, Jordan Email: [email protected] Abstract: This analysis proposes an analytical-numerical approach for providing solutions of a class of nonlinear fractional Klein-Gordon equation subjected to appropriate initial conditions in Caputo sense by using the Fractional Red...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 4 (FALL)

صفحات  277- 281

تاریخ انتشار 2016-09-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023